If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+51x=0
a = 17; b = 51; c = 0;
Δ = b2-4ac
Δ = 512-4·17·0
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-51}{2*17}=\frac{-102}{34} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+51}{2*17}=\frac{0}{34} =0 $
| 10x+40=2(5x+15) | | 10y=2y+20 | | 2(2x+1)+5(x-7)=4(2x-6)+3 | | 2(2x+)+5(x-7)=4(2x-6)+3 | | 2(3x+4x=1 | | 11x-16x=20 | | 3(x-1.25)=1.25 | | 2x+15x=34 | | 6x^2+9=-1 | | 4w+4-2(-7w-2)=2(w-1) | | 73–2x=7–x | | -8(g+12=24 | | 6+2(4x-2)=-2(3x-3)+6x | | -4+5v=-34 | | -2x-(4x-3)+15=9x-3(x+2) | | -4(-5x+1)-x=7(x-1)-1 | | N=5+(n+5)/2 | | -3(x-1)=-7x+11 | | -4=a-12 | | x+5(1500-10x)=589500 | | N=7.5+n/2 | | 4x=28x-3x | | h=-16(4.5)^2+72(4.5)8 | | h=-16(4.0)^2+72(4.0)8. | | y=-4y-6 | | 4+8x=-3 | | h=-16(3.5)^2+72(3.5)8 | | -5(x+5)=7-4x | | h=-16(3.0)^2+72(3.0)8 | | 5x-3x=74 | | h=-16(2.5)^2+72(2.5)8 | | 6.2v−(2.1v−5)=1.1−3.7v |